Click the title below to display the complete page!

Effect of a constitutive relationship on seismic response of soils.Part I: Constitutive modeling of cyclic behaviour of soils


This paper is the first part of the general paper dealing with effects of constitutive modeling of cyclic stress–strain behavior of soils on site amplification. The paper concentrates on modeling of pseudo-static cyclic soil behavior in small to medium strain range. In order to fit the small strain data accurately, the chosen analytical stress–strain relationship should satisfy the specific small strain condition formulated for soils using the small strain data from the pseudo-static cyclic tests. Analysis of conventional relationships, in particular the Ramberg–Osgood (R–O) relationship, indicated that a failure to satisfy this condition lead to low accuracy of prediction of both tangent stiffness and damping ratio at small and medium strains. The logarithmic function originally proposed to describe static monotonic stress–strain behavior is applied to fit experimental cyclic backbone curves. Constructed to satisfy the formulated small strain condition for soils, this function has proven to be free from the limitations of the R–O and other relationships. When applied in combination with the Masing rules to predict damping ratios, it gives a good prediction in the small to medium strain range, where the Masing hypothesis is supported by experimental evidence.


Puzrin, Alexander and Shiran, A.

Index Terms:

geomechanics; GeomechanicsGroup; Puzrin, Alexander; Shiran, A.

Further Information:

Date published: 2000